Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Crit Care ; 26(1): 185, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1894496

RESUMEN

BACKGROUND: Whether targeting the driving pressure (∆P) when adjusting the tidal volume in mechanically ventilated patients with the acute respiratory distress syndrome (ARDS) may decrease the risk of ventilator-induced lung injury remains a matter of research. In this study, we assessed the effect of a ∆P-guided ventilation on the mechanical power. METHODS: We prospectively included adult patients with moderate-to-severe ARDS. Positive end expiratory pressure was set by the attending physician and kept constant during the study. Tidal volume was first adjusted to target 6 ml/kg of predicted body weight (PBW-guided ventilation) and subsequently modified within a range from 4 to 10 ml/kg PBW to target a ∆P between 12 and 14 cm H2O. The respiratory rate was then re-adjusted within a range from 12 to 40 breaths/min until EtCO2 returned to its baseline value (∆P-guided ventilation). Mechanical power was computed at each step. RESULTS: Fifty-one patients were included between December 2019 and May 2021. ∆P-guided ventilation was feasible in all but one patient. The ∆P during PBW-guided ventilation was already within the target range of ∆P-guided ventilation in five (10%) patients, above in nine (18%) and below in 36 (72%). The change from PBW- to ∆P-guided ventilation was thus accompanied by an overall increase in tidal volume from 6.1 mL/kg PBW [5.9-6.2] to 7.7 ml/kg PBW [6.2-8.7], while respiratory rate was decreased from 29 breaths/min [26-32] to 21 breaths/min [16-28] (p < 0.001 for all comparisons). ∆P-guided ventilation was accompanied by a significant decrease in mechanical power from 31.5 J/min [28-35.7] to 28.8 J/min [24.6-32.6] (p < 0.001), representing a relative decrease of 7% [0-16]. With ∆P-guided ventilation, the PaO2/FiO2 ratio increased and the ventilatory ratio decreased. CONCLUSION: As compared to a conventional PBW-guided ventilation, a ∆P-guided ventilation strategy targeting a ∆P between 12 and 14 cm H2O required to change the tidal volume in 90% of the patients. Such ∆P-guided ventilation significantly reduced the mechanical power. Whether this physiological observation could be associated with clinical benefit should be assessed in clinical trials.


Asunto(s)
Síndrome de Dificultad Respiratoria , Adulto , Peso Corporal , Humanos , Pulmón , Respiración con Presión Positiva , Respiración Artificial , Síndrome de Dificultad Respiratoria/terapia , Volumen de Ventilación Pulmonar/fisiología
4.
Ann Intensive Care ; 11(1): 38, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1115254

RESUMEN

BACKGROUND: We describe a frugal approach (focusing on needs, performance, and costs) to manage a massive influx of COVID-19 patients with acute hypoxemic respiratory failure (AHRF) using the Boussignac valve protected by a filter ("Filter Frugal CPAP", FF-CPAP) in and out the ICU. METHODS: (1) A bench study measured the impact of two filters with different mechanical properties on CPAP performances, and pressures were also measured in patients. (2) Non-ICU healthcare staff working in COVID-19 intermediate care units were trained with a video tutorial posted on a massive open online course. (3) A clinical study assessed the feasibility and safety of using FF-CPAP to maintain oxygenation and manage patients out of the ICU during a massive outbreak. RESULTS: Bench assessments showed that adding a filter did not affect the effective pressure delivered to the patient. The resistive load induced by the filter variably increased the simulated patient's work of breathing (6-34%) needed to sustain the tidal volume, depending on the filter's resistance, respiratory mechanics and basal inspiratory effort. In patients, FF-CPAP achieved pressures similar to those obtained on the bench. The massive training tool provided precious information on the use of Boussignac FF-CPAP on COVID-19 patients. Then 85 COVID-19 patients with ICU admission criteria over a 1-month period were studied upon FF-CPAP initiation for AHRF. FF-CPAP significantly decreased respiratory rate and increased SpO2. Thirty-six (43%) patients presented with respiratory indications for intubation prior to FF-CPAP initiation, and 13 (36%) of them improved without intubation. Overall, 31 patients (36%) improved with FF-CPAP alone and 17 patients (20%) did not require ICU admission. Patients with a respiratory rate > 32 breaths/min upon FF-CPAP initiation had a higher cumulative probability of intubation (p < 0.001 by log-rank test). CONCLUSION: Adding a filter to the Boussignac valve does not affect the delivered pressure but may variably increase the resistive load depending on the filter used. Clinical assessment suggests that FF-CPAP is a frugal solution to provide a ventilatory support and improve oxygenation to numerous patients suffering from AHRF in the context of a massive outbreak.

5.
Crit Care ; 24(1): 699, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: covidwho-992531

RESUMEN

BACKGROUND: Data on incidence of ventilator-associated pneumonia (VAP) and invasive pulmonary aspergillosis in patients with severe SARS-CoV-2 infection are limited. METHODS: We conducted a monocenter retrospective study comparing the incidence of VAP and invasive aspergillosis between patients with COVID-19-related acute respiratory distress syndrome (C-ARDS) and those with non-SARS-CoV-2 viral ARDS (NC-ARDS). RESULTS: We assessed 90 C-ARDS and 82 NC-ARDS patients, who were mechanically ventilated for more than 48 h. At ICU admission, there were significantly fewer bacterial coinfections documented in C-ARDS than in NC-ARDS: 14 (16%) vs 38 (48%), p < 0.01. Conversely, significantly more patients developed at least one VAP episode in C-ARDS as compared with NC-ARDS: 58 (64%) vs. 36 (44%), p = 0.007. The probability of VAP was significantly higher in C-ARDS after adjusting on death and ventilator weaning [sub-hazard ratio = 1.72 (1.14-2.52), p < 0.01]. The incidence of multi-drug-resistant bacteria (MDR)-related VAP was significantly higher in C-ARDS than in NC-ARDS: 21 (23%) vs. 9 (11%), p = 0.03. Carbapenem was more used in C-ARDS than in NC-ARDS: 48 (53%), vs 21 (26%), p < 0.01. According to AspICU algorithm, there were fewer cases of putative aspergillosis in C-ARDS than in NC-ARDS [2 (2%) vs. 12 (15%), p = 0.003], but there was no difference in Aspergillus colonization. CONCLUSIONS: In our experience, we evidenced a higher incidence of VAP and MDR-VAP in C-ARDS than in NC-ARDS and a lower risk for invasive aspergillosis in the former group.


Asunto(s)
COVID-19/microbiología , Unidades de Cuidados Intensivos , Neumonía Asociada al Ventilador/microbiología , Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/microbiología , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Aspergilosis Pulmonar Invasiva/diagnóstico , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo
7.
Crit Care ; 24(1): 678, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: covidwho-962958

RESUMEN

RATIONALE: Patients with coronavirus disease-19-related acute respiratory distress syndrome (C-ARDS) could have a specific physiological phenotype as compared with those affected by ARDS from other causes (NC-ARDS). OBJECTIVES: To describe the effect of positive end-expiratory pressure (PEEP) on respiratory mechanics in C-ARDS patients in supine and prone position, and as compared to NC-ARDS. The primary endpoint was the best PEEP defined as the smallest sum of hyperdistension and collapse. METHODS: Seventeen patients with moderate-to-severe C-ARDS were monitored by electrical impedance tomography (EIT) and evaluated during PEEP titration in supine (n = 17) and prone (n = 14) position and compared with 13 NC-ARDS patients investigated by EIT in our department before the COVID-19 pandemic. RESULTS: As compared with NC-ARDS, C-ARDS exhibited a higher median best PEEP (defined using EIT as the smallest sum of hyperdistension and collapse, 12 [9, 12] vs. 9 [6, 9] cmH2O, p < 0.01), more collapse at low PEEP, and less hyperdistension at high PEEP. The median value of the best PEEP was similar in C-ARDS in supine and prone position: 12 [9, 12] vs. 12 [10, 15] cmH2O, p = 0.59. The response to PEEP was also similar in C-ARDS patients with higher vs. lower respiratory system compliance. CONCLUSION: An intermediate PEEP level seems appropriate in half of our C-ARDS patients. There is no solid evidence that compliance at low PEEP could predict the response to PEEP.


Asunto(s)
COVID-19/fisiopatología , Respiración con Presión Positiva/métodos , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Tomografía Computarizada por Rayos X/normas , Adulto , COVID-19/diagnóstico por imagen , Impedancia Eléctrica/uso terapéutico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Respiración con Presión Positiva/instrumentación , Síndrome de Dificultad Respiratoria/fisiopatología , Mecánica Respiratoria/fisiología , Tomografía Computarizada por Rayos X/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA